

PC412S0NIP0F Series

High Speed 25Mb/s, High CMR Mini-flat Package *OPIC Photocoupler

■ Description

PC412S0NIP0F Series contains a LED optically coupled to an OPIC.

It is packaged in a 8 pin mini-flat.
Input-output isolation voltage(rms) is 3.75 kV.
High speed response (TYP. 25 Mb/s) and CMR is MIN. 20 kV/μs.

■ Features

- 1.8 pin Mini-flat package
- 2. Double transfer mold package (Ideal for Flow Soldering)
- 3. High noise immunity due to high instantaneous common mode rejection voltage (CM_H : MIN. 20 kV/ μ s, CM_L : MIN. –20 kV/ μ s)
- 4. High speed response

 $(t_{PHL}: TYP. 23 \text{ ns}, t_{PLH}: TYP. 22 \text{ ns})$

- 5. Isolation voltage between input and output ($V_{iso(rms)}$: 3.75 kV)
- 6. Lead-free and RoHS driective compliant

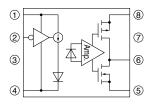
■ Agency approvals/Compliance

- Recognized by UL1577 (Double protection isolation), file No. E64380 (as model No. PC412S)
- 2. Approved by VDE, DIN EN60747-5-2^(*) (as an option), file No. 40009162 (as model No. **PC412S**)
- 3. Package resin: UL flammability grade (94V-0))

(*) DIN EN60747-5-2: successor standard of DIN VDE0884.

■ Applications

- 1. Programmable controller
- 2. Inverter


Notice The content of data sheet is subject to change without prior notice.

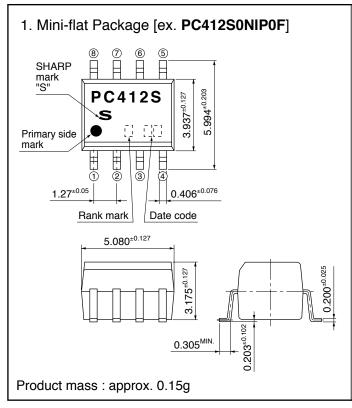
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.

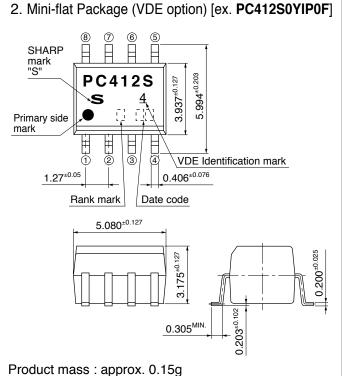
^{* &}quot;OPIC"(Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and a signal-processing circuit integrated onto a single chip.

■ Internal Connection Diagram

(1) V_{CC1} (5) GND2 (2) V_{IN} (6) V_O *(3) NC *(7) NC (4) GND1 (8) V_{CC2}

*pin ③ and ⑦ are not allowed external connection


■ Truth table


Input	LED	Output
L	ON	L
Н	OFF	Н

L : Logic (0) H : Logic (1)

■ Outline Dimensions

(Unit : mm)

Plating material : Pd (Au flush)

Dat	Date code (2 digit)						
	1st o	digit		2nd	digit		
	Year of p	roduction		Month of production			
A.D.	Mark	A.D.	Mark	Month	Mark		
1990	A	2002	P	January	1		
1991	В	2003	R	February	2		
1992	С	2004	S	March	3		
1993	D	2005	T	April	4		
1994	Е	2006	U	May	5		
1995	F	2007	V	June	6		
1996	Н	2008	W	July	7		
1997	J	2009	X	August	8		
1998	K	2010	A	September	9		
1999	L	2011	В	October	0		
2000	M	2012	С	November	N		
2001	N	:	:	December	D		

repeats in a 20 year cycle

Country of origin Japan

Rank mark
With or without.

■ Absolute Maximum Ratings

(Unless otherwise specified T_a=T_{opr})

	Parameter	Symbol	Rating	Unit
Input	Supply voltage	V_{CC1}	0 to 5.5	V
Input	Input voltage	V_{IN}	-0.5 to $V_{CC1}+0.5$	V
	Supply voltage	V_{CC2}	0 to 5.5	V
Output	High level output voltage	Vo	-0.5 to V _{CC2} +0.5	V
	Low level output current	Io	10	mA
*1 Isolat	ion voltage	V _{iso} (rms) 3.75 k		kV
Operating temperature		Topr	T _{opr} -40 to +85	
Storage temperature		T _{stg}	-55 to +125	°C
*2 Solde	ring temperature	T _{sol}	270	°C

^{*1 40} to 60%RH, AC for 1 minute, f=60Hz

■ Electro-optical Characteristics

(Unless otherwise specified $T_a=T_{opr}$, TYP. at $T_a=25^{\circ}C$, $V_{CC1}=V_{CC2}=5V$)

(Omess otherwise specified 1 ₃ –1					-орг,		-, · cc1	. cc2 /
		Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
	Low level supply current		I_{CC1L}	$V_{IN}=0$	_	6.0	10.0	mA
Input	Hi	gh level supply current	I_{CC1H}	$V_{IN}=V_{CC1}$	_	0.8	3.0	mA
	In	put current	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	μΑ			
	Hi	ow level supply current igh level supply current Igh level supply current Iquit current Igh level supply current Igh level output voltage Voh ow level output voltage Voh olation resistance Igh level output voltage Vol olation resistance Igh level output voltage Voh Tess Tess Tess Tess Tess time Tess Tess time Tess Tess time Tess time Tess Tess time Tes	$V_{IN}=5V$	_	2.5	9.0	mA	
	Lo	ow level supply current	I_{CC2L}	$V_{IN}=0$	_	2.0	9.0	mA
	112	ah laval autmut valta aa	Parameter Symbol el supply current el supply current I_{CC1L} rent I_{IN} el supply current I_{IN} el supply current I_{CC2H} el supply current I_{CC2H} el supply current I_{CC2L} el output voltage V_{OH} resistance I_{CC2L} el output voltage I_{CC2L} resistance I_{CC2L} $I_$	$I_O=-20\mu A,V_{IN}=5V$	4.4	5.0	_	V
Output	ш	gn ievei output voitage	V OH	$I_O=-4mA$, $V_{IN}=5V$	4.0	4.8	_	V
				$I_{O}=20\mu A, V_{IN}=0$	_	0	0.1	V
	Low level output voltage		V_{OL}	$I_{O}=400\mu A, V_{IN}=0$	_	_	0.1	V
				$I_{O}=4mA, V_{IN}=0$	_	0.5	1.0	V
	Isolation resistance		R _{ISO}	DC500V, 4060%RH	5×10 ¹⁰	10 ¹¹	_	Ω
	Floating capacitance		$C_{\rm f}$	V=0, f=1MHz	_	1.0	_	pF
		"High→Low" propagation delay time	t _{PHL}		_	23	40	ns
	time	"Low→High" propagation delay time	t_{PLH}	C _L =15pF, CMOS Logic level	_	22	40	ns
	tir	Pulse width distortion t _{pHL} -t _{pLH}	∆tw	$V_{IN}=0 \rightarrow 5V$	_	-	6	ns
Transfer	esbonse	Propagation delay skew	T_{PSK}	$t_r = t_f < 1 \text{ns}$	_	-	20	ns
charac-	dse	Data transfer rate	T	Pulse width 40ns	_	-	25	Mb/s
teristics	×	Rise time	t_r	Duty 50%	_	4	-	ns
		Fall time	t_{f}		_	3	-	ns
	Instantaneous common mode		CM	$V_{IN} = V_{CC1}, V_O > 0.8 \times V_{CC2}$	10	20		kV/μs
	rejection voltage "Outpu : High level"		CIVIH		10		_	κν/μο
	Instantaneous common mode		CM	$V_{IN}=0, V_O<0.8V$	_10	-20	_	kV/μs
	rej	ection voltage "Outpu : Low level"	CIVIL	$V_{CM}=1kV$	-10	-20	_	Κν/μο

^{*3} When measuring output and transfer characteristics, connect a by-pass capacitor $(0.01 \mu F \text{ or more})$ between V_{CC1} (pin 0) and GND_1 (pin 0), between V_{CC2} (pin 0) and GND_2 (pin 0) near the device.

^{*2} For 10s

■ Model Line-up

Doolsooo	Taping					
	Package	1 500pcs/reel				
	DIN EN60747-5-2		Approved			
	Model No.	PC412S0NIP0F	PC412S0YIP0F			

Please contact a local SHARP sales representative to inquire about production status.

Fig.1 Test Circuit for Propagation Delay Time and Rise Time, Fall Time

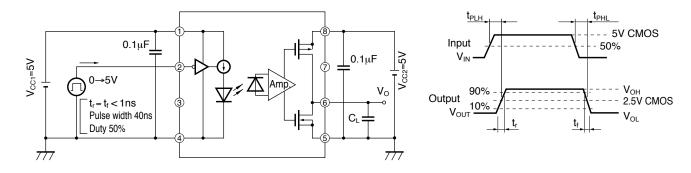


Fig.2 Test Circuit for Instantaneous Common Mode Rejection Voltage

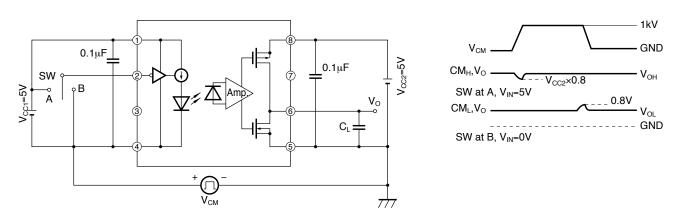


Fig.3 Output Voltage vs. Input Voltage

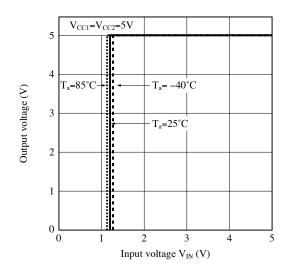


Fig.4 Input Threshold Voltage vs. Input Supply Voltage

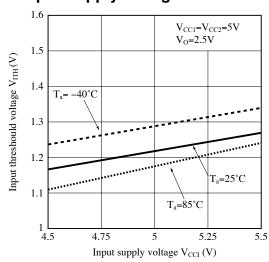


Fig.5 Input High Level Supply Current vs.
Ambient Temperature

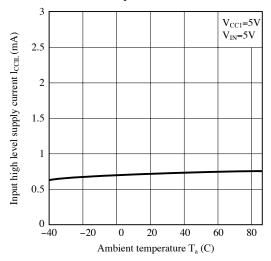


Fig.7 Output High Level Supply Current vs. Ambient Temperature

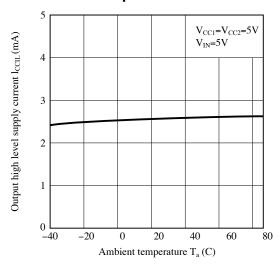


Fig.9 High Level Output Voltage vs. Ambient Temperature

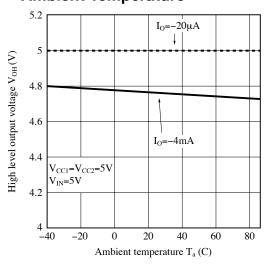


Fig.6 Input Low Level Supply Current vs.
Ambient Temperature

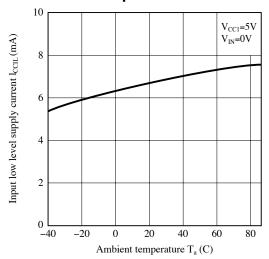


Fig.8 Output Low Level Supply Current vs.
Ambient Temperature

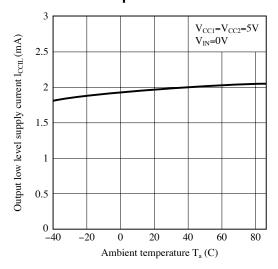


Fig.10 Low Level Output Voltage vs. Ambient Temperature

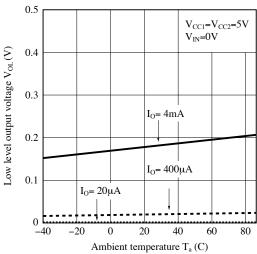


Fig.11 Rise Time/Fall Time vs.

Ambient Temperature

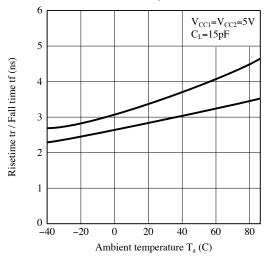


Fig.13 Pulse Width Distortion vs.
Ambient Temperature

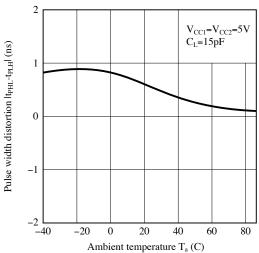


Fig.15 Pulse Width Distortion vs.
Output Lood Capacitance

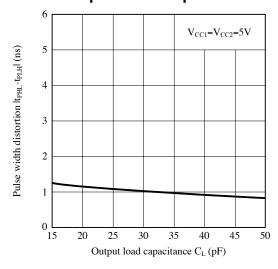


Fig.12 Propagation Delay Time vs.
Ambient Temperature

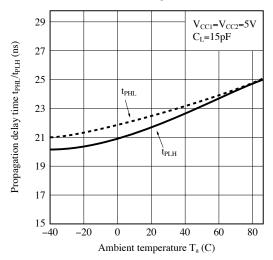
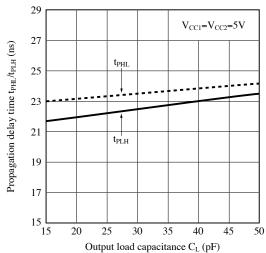



Fig.14 Propagation Delay Time vs.
Output Load Capacitance

Remarks: Please be aware that all data in the graph are just for reference and not for guarantee.

■ Design Considerations

Recommended operating conditions

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply voltage	V _{CC1}	4.5	_	5.5	V
Supply voltage	V_{CC2}	4.5	_	5.5	V
Low level input voltage	V_{IL}	0.0	_	0.8	V
High level input voltage	V _{IH}	2.0	_	V _{CC1}	V
Operating temperature	T _{opr}	-40	-	+70	°C

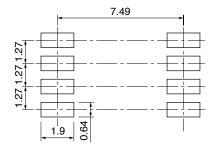
Notes about static electricity

Transistor of detector side in CMOS configuration may be damaged by static electricity due to its minute design.

When handling these devices, general countermeasure against static electricity should be taken to avoid breakdown of devices or degradation of characteristics.

Design guide

In order to stabilize power supply line, we should certainly recommend to connect a by-pass capacitor of $0.01\mu F$ or more between V_{CC1} -GND and V_{CC2} -GND near the device.


The detector which is used in this device, has parasitic diode between each pins and GND.

There are cases that miss operation or destruction possibly may be occurred if electric potential of any pin becomes below GND level even for instant.

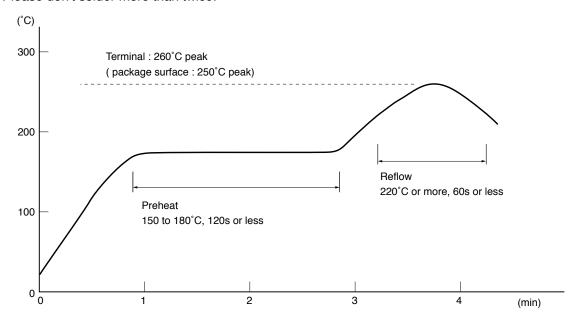
Therefore it shall be recommended to design the circuit that electric potential of any pin does not become below GND level.

This product is not designed against irradiation and incorporates non-coherent LED.

Recommended foot print (reference)

(Unit:mm)

■ Manufacturing Guidelines


Soldering Method

Reflow Soldering:

Reflow soldering should follow the temperature profile shown below.

Soldering should not exceed the curve of temperature profile and time.

Please don't solder more than twice.

Flow Soldering:

Due to SHARP's double transfer mold construction submersion in flow solder bath is allowed under the below listed guidelines.

Flow soldering should be completed below 270 °C and within 10s.

Preheating is within the bounds of 100 to 150 °C and 30 to 80s.

Please don't solder more than twice.

Hand soldering

Hand soldering should be completed within 3s when the point of solder iron is below 400 °C.

Please don't solder more than twice.

Other notice

Please test the soldering method in actual condition and make sure the soldering works fine, since the impact on the junction between the device and PCB varies depending on the tooling and soldering conditions.

Cleaning instructions

Solvent cleaning:

Solvent temperature should be 45°C or below. Immersion time should be 3 minutes or less.

Ultrasonic cleaning:

The impact on the device varies depending on the size of the cleaning bath, ultrasonic output, cleaning time, size of PCB and mounting method of the device.

Therefore, please make sure the device withstands the ultrasonic cleaning in actual conditions in advance of mass production.

Recommended solvent materials:

Ethyl alcohol, Methyl alcohol and Isopropyl alcohol.

In case the other type of solvent materials are intended to be used, please make sure they work fine in actual using conditions since some materials may erode the packaging resin.

Presence of ODC

This product shall not contain the following materials.

And they are not used in the production process for this product.

Regulation substances: CFCs, Halon, Carbon tetrachloride, 1.1.1-Trichloroethane (Methylchloroform)

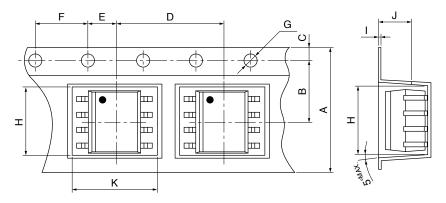
Specific brominated flame retardants such as the PBB and PBDE are not used in this product at all.

This product shall not contain the following materials banned in the RoHS Directive (2002/95/EC).

•Lead, Mercury, Cadmium, Hexavalent chromium, Polybrominated biphenyls (PBB), Polybrominated diphenyl ethers (PBDE).

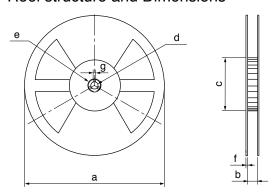
● Tape and Reel package

1. SMT Gullwing

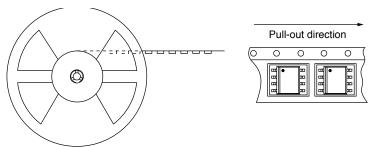

Package materials

Carrier tape : PS

Cover tape: PET (three layer system)


Reel: PS

Carrier tape structure and Dimensions


	Dimensions List					(U	<u> nit : mm)</u>
	A	В	С	D	Е	F	G
	12.0±0.3	5.50±0.05	1.75 ^{±0.10}	8.0 ^{±0.1}	2.00±0.05	4.0 ^{±0.1}	φ1.55±0.05
ĺ	Н	I	J	K			
ĺ	$5.4^{\pm0.1}$	0.30±0.05	3.7 ^{±0.1}	6.3 ^{±0.1}			

Reel structure and Dimensions

Dimensio	ns List	(Unit: mm)			
a	b	c	d		
ф330	13.5 ^{±1.5}	φ100.0±1.0	φ13.0±0.2		
e	f	g			
ф21.0 ^{±0.8}	2.0 ^{TYP.}	2.0±0.5			

Direction of product insertion

[Packing: 1 500pcs/reel]

■ Important Notices

- The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.
- · Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.
- · Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:
- (i) The devices in this publication are designed for use in general electronic equipment designs such as:
 - --- Personal computers
 - --- Office automation equipment
 - --- Telecommunication equipment [terminal]
 - --- Test and measurement equipment
 - --- Industrial control
 - --- Audio visual equipment
 - --- Consumer electronics
- (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection

with equipment that requires higher reliability such as:

- --- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- --- Traffic signals
- --- Gas leakage sensor breakers
- --- Alarm equipment
- --- Various safety devices, etc.
- (iii) SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:
 - --- Space applications
 - --- Telecommunication equipment [trunk lines]
 - --- Nuclear power control equipment
 - --- Medical and other life support equipment (e.g., scuba).
- · If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- · Contact and consult with a SHARP representative if there are any questions about the contents of this publication.